Enhancing the search ability of differential evolution through orthogonal crossover

نویسندگان

  • Yong Wang
  • Zixing Cai
  • Qingfu Zhang
چکیده

0020-0255/$ see front matter 2011 Elsevier Inc doi:10.1016/j.ins.2011.09.001 ⇑ Corresponding author. E-mail address: [email protected] (Y. Wang). Differential evolution (DE) is a class of simple yet powerful evolutionary algorithms for global numerical optimization. Binomial crossover and exponential crossover are two commonly used crossover operators in current popular DE. It is noteworthy that these two operators can only generate a vertex of a hyper-rectangle defined by the mutant and target vectors. Therefore, the search ability of DE may be limited. Orthogonal crossover (OX) operators, which are based on orthogonal design, can make a systematic and rational search in a region defined by the parent solutions. In this paper, we have suggested a framework for using an OX in DE variants and proposed OXDE, a combination of DE/rand/1/bin and OX. Extensive experiments have been carried out to study OXDE and to demonstrate that our framework can also be used for improving the performance of other DE variants. 2011 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller

This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...

متن کامل

Control of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller

This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...

متن کامل

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

A Modified Cloud Particles Differential Evolution Algorithm for Real-Parameter Optimization

The issue of exploration-exploitation remains one of the most challenging tasks within the framework of evolutionary algorithms. To effectively balance the exploration and exploitation in the search space, this paper proposes a modified cloud particles differential evolution algorithm (MCPDE) for real-parameter optimization. In contrast to the original Cloud Particles Differential Evolution (CP...

متن کامل

Calculation of Static Voltage Stability Margin Based on Continuous Power Flow and Improved Differential Evolution Algorithm

Abstract With power grid heavy-load operation, and remote transmission distance which leads to voltage collapse, the method that combines continuous power flow (CPF) and improved differential evolution (IDE) algorithm is put forward to calculate a static voltage stability margin. First, we introduce mathematical model and CPF for solving the static voltage stability margin. And then, simulated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Sci.

دوره 185  شماره 

صفحات  -

تاریخ انتشار 2012